翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

compact group : ウィキペディア英語版
compact group

In mathematics, a compact (topological, often understood) group is a topological group whose topology is compact. Compact groups are a natural generalisation of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
In the following we will assume all groups are Hausdorff spaces.
==Compact Lie groups==

Lie groups form a very nice class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include
* the circle group T and the torus groups T''n'',
* the orthogonal groups O(''n''), the special orthogonal group SO(''n'') and its covering spin group Spin(''n''),
* the unitary group U(''n'') and the special unitary group SU(''n''),
* the symplectic group Sp(''n''),
* the compact forms of the exceptional Lie groups: G2, F4, E6, E7, and E8,
The classification theorem of compact Lie groups states that up to finite extensions and finite covers this exhausts the list of examples (which already includes some redundancies).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「compact group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.